毕业论文

打赏
当前位置: 毕业论文 > 研究现状 >

电力系统潮流计算问题国内外研究现状

时间:2021-04-11 15:45来源:毕业论文
利用电子数字计算机进行电力系统潮流计算从50年代中期就已经开始。在这20年内,潮流计算曾采用了各种不同的方法,这些方法的发展主要围绕着对潮流计算的一些基本要求进行的。对

利用电子数字计算机进行电力系统潮流计算从50年代中期就已经开始。在这20年内,潮流计算曾采用了各种不同的方法,这些方法的发展主要围绕着对潮流计算的一些基本要求进行的。对潮流计算的要求可以归纳为下面几点:65376

(1)计算方法的可靠性或收敛性;

(2)对计算机内存量的要求;

(3)计算速度;

(4)计算的方便性和灵活性。

电力系统潮流计算问题在数学上是一组多元非线性方程式求解问题,其解法都离不开迭代。因此,对潮流计算方法,首先要求它能可靠地收敛,并给出正确答案。由于电力系统结构及参数的一些特点,并且随着电力系统不断扩大,潮流问题的方程式阶数越来越高,对这样的方程式并不是任何数学方法都能保证给出正确答案的。这种情况成为促使电力系统计算人员不断寻求新的更可靠的方法的重要因素。

在用数字计算机解电力系统潮流问题的开始阶段,普遍采取以节点导纳矩阵为基础的逐次代入法。这个方法的原理比较简单,要求的数字计算机内存量比较小,适应50年代电子计算机制造水平和当时电力系统理论水平。但它的收敛性较差,当系统规模变大时,迭代次数急剧上升,在计算中往往出现迭代不收敛的情况。这就迫使电力系统计算人员转向以阻抗矩阵为基础的逐次代入法。

60年代初,数字计算机已发展到第二代,计算机的内存和速度发生了很大的飞跃,从而为阻抗法的采用创造了条件。阻抗法要求数字计算机储存表征系统接线和参数的阻抗矩阵,这就需要较大的内存量。而且阻抗法每迭代一次都要求顺次取阻抗矩阵中的每一个元素进行运算,因此,每次迭代的运算量很大。这两种情况是过去电子管数字计算机无法适应的。论文网

阻抗法改善了系统潮流计算问题的收敛性,解决了导纳法无法求解的一些系统的潮流计算,在60年代获得了广泛的应用,曾为我国电力系统设计.运行和研究作出了很大的贡献。但阻抗法存在着的主要缺点是占用计算机内存大,每次迭代的计算量大。当系统不断扩大时,这些缺点就更加突出。一个内存16K的计算机在采用阻抗法时只能计算100个节点以下的系统,32K内存的计算机也只能计算150个节点以下的系统。

为了克服阻抗法在内存和速度方面的缺点,60年代中期发展了以阻抗矩阵为基础的分块阻抗法。这个方法把一个大系统分割为几个小的地区系统,在计算机内只需要存储各个地区系统的阻抗矩阵及它们之间联络线的阻抗,这样不仅大幅度地节省了内存容量,同时也提高了计算速度。

克服阻抗法缺点的另一途径是采用牛顿-拉夫逊法。这是数学中解决非线性方程式的典型方法,有较好的收敛性。在解决电力系统潮流计算问题时,是以导纳矩阵为基础的,因此,只要我们能在迭代过程中尽可能保持方程式系数矩阵的稀疏性,就可以大大提高牛顿法潮流程序的效率。自从60年代中期,在牛顿法中利用了最佳顺序消去法以后,牛顿法在收敛性和速度方面都超过了阻抗法,成为60年代末期以后广泛采用的优秀方法。

随着电力系统的日益扩大和复杂化,特别是电力系统逐步实现自动控制的需要,对系统潮流计算在速度。内存以及收敛性方面都提出了更高的要求。

70年代以来,潮流计算方法通过不同的途径继续向前发展,其中比较成功的一个方法就是P-Q分解法。这个方法,根据电力系统的特点,抓住主要矛盾,对纯数学的牛顿法进行了改进,从而在内存容量及计算速度方面都大大向前迈进内了一步。使一个32K内存容量的数字计算机可以计算1000个节点系统的潮流问题,此法计算速度已能用于在线计算,作系统静态安全监视。 电力系统潮流计算问题国内外研究现状:http://www.youerw.com/yanjiu/lunwen_72976.html

------分隔线----------------------------
推荐内容