摘要:磁悬浮技术具有无磨损、无需润滑以及寿命较长等一系列优点,在能源、交通、航空航天、机械工业和生命科学等高科技领域有着广泛的应用背景。然而,磁悬浮是一个本质非线性、不确定性、开环不稳定性的复杂系统。也正是由于磁悬浮的这些特性,使其更加具有研究价值和意义。本课题在分析磁悬浮系统构成及工作原理和了解了线性二次最优控制基本理论的基础上,建立其数学模型,确立了控制器类型,以此为研究对象,设计了线性二次最优控制器,对加权矩阵Q与R两个参数对系统的影响作了分析,并研究了在不同性能指标参数的情况下,该磁悬浮控制系统对磁间隙偏移随时间变化的控制效果。最后运用MATLAB中的仿真工具对磁悬浮二次最优控制进行了仿真,比较研究效果,得到最佳加权矩阵Q和R,获得了良好的控制效果。20132
毕业论文关键词:磁悬浮系统;线性二次最优控制;MATLAB
Research and Design of Control Algorithm of Magnetic Levitation System
Abstract: Magnetic suspension technology, which has a series of advantages such as no friction, no wear, no need of lubrication and long life expectancy, is widely concerned and adopted in high-tech areas such as energy, transportation, aerospace, industrial machinery and life science.However, the maglev is a complex system with nonlinear, uncertainty, open-loop instability. It is precisely because of these characteristics of the maglev, make it more valuable and significant to study. Based on the analysis of the composition and working principle of magnetic suspension system and the linear two based on the basic theory of optimal control, its system mathematical model was established, take this as the object of study, design a linear quadratic optimization controller, the weighted matrix Q and R of two parameters on the system are discussed in detail, and studied at different performance parameters of the case, the control effect of this magnetic levitation control system of initial magnetic gap and by external interference and magnetic gap variation with time. Finally, using the simulation tools in MATLAB to magnetic two optimal control simulation, study on effect of comparison, the optimal weighting matrices Q and R, and has achieved good results.
Key Words: Magnetic Levitation System;Linear Quadratic Optimization Control;MATLAB
目 录
1 绪论 1
1.1 磁悬浮系统研究的意义 1
1.2 国内外研究情况 2
1.2.1 磁悬浮方式的分类 3
1.2.2 控制方式的分类 3
1.2.3 磁悬浮轴承对控制器的要求 4
1.3 国内外发展情况 4
1.4 MATLAB简介 5
1.5 Simulink简介 6
1.6 课题的主要工作 6
2 磁悬浮系统的结构与建模 8
2.1 简介 8
2.1.1 磁悬浮实验本体 8
2.1.2 磁悬浮平台 9
2.2 磁悬浮系统的基本结构 9
2.3 磁悬浮系统的工作原理 10
2.4 磁悬浮系统的特性分析 10
2.5 磁悬浮系统的数学建模 11
2.5.1 磁悬浮系统建模假设 11
2.5.2 控制对象的运动方程 11
2.5.3 系统的电磁力模型 11
2.5.4 电磁线圈模型化 13
2.5.5 功率放大器模型 14
2.5.6 系统平衡的边界条件 15
2.5.7 系统方程的描述 15
2.5.8 系统的数学模型 15 MATLAB磁悬浮系统的控制算法研究与设计:http://www.youerw.com/zidonghua/lunwen_11787.html