摘要:本文采用水热法结合煅烧处理制备出氧化锌-氧化亚钴(ZnO-CoO)复合材料,同时探究水热时间和水热温度对ZnO-CoO的形貌和电化学性能的影响,确定制备ZnO-CoO的最佳条件:水热时间为8h,水热温度为150℃。以上述最佳条件为反应条件,在原料中添加PVP,其他步骤不变,制备ZnO-CoO@C复合材料,对其进行形貌表征和电化学性能测试,并探究PVP添加量的影响。利用X射线衍射(XRD)、拉曼光谱、扫描电镜
(SEM)、透射电镜(TEM)等,对样品的形貌与结构进行分析。在2MKOH电解液中进行电化学测试,结果表明:最佳的ZnO-CoO@C复合材料在电流密度为0.5Ag-1时,比电容为196.4Fg-1;在2Ag-1的电流密度下,循环25000圈后,比电容的仍有很高的保持率,为97.5%,显示了ZnO-CoO@C复合材料极其卓越的循环稳定性。为了进一步提高复合材料的电化学性能,我们以ZnO-CoO@C前驱体为原料,通过硅烷偶联剂与氧化石墨烯(GO)偶联,结合煅烧处理制备ZnO-CoO@C/RGO复合材料,并对其电化学性进行了系统探究。
关键词氧化锌氧化亚钴电化学性能氧化石墨烯
毕业设计说明书外文摘要
本文采用水热法结合煅烧处理制备出氧化锌-氧化亚钴(ZnO-CoO)复合材料,同时 探究水热时间和水热温度对 ZnO-CoO 的形貌和电化学性能的影响,确定制备 ZnO-CoO 的最佳条件:水热时间为 8 h,水热温度为 150 ℃。以上述最佳条件为反应条件,在原料 中添加 PVP,其他步骤不变,制备 ZnO-CoO@C 复合材料,对其进行形貌表征和电化学 性能测试,并探究 PVP 添加量的影响。利用 X 射线衍射(XRD)、拉曼光谱、扫描电镜
(SEM)、透射电镜(TEM)等,对样品的形貌与结构进行分析。在 2 M KOH 电解液中 进行电化学测试,结果表明:最佳的 ZnO-CoO@C 复合材料在电流密度为 0.5 A g-1 时, 比电容为 196.4 F g-1;在 2 A g-1 的电流密度下,循环 25 000 圈后,比电容的仍有很高的保 持率,为 97.5%,显示了 ZnO-CoO@C 复合材料极其卓越的循环稳定性。为了进一步提 高复合材料的电化学性能,我们以 ZnO-CoO@C 前驱体为原料,通过硅烷偶联剂与氧化 石墨烯(GO)偶联,结合煅烧处理制备 ZnO-CoO@C/RGO 复合材料,并对其电化学性 进行了系统探究。
关键词 氧化锌 氧化亚钴 电化学性能 氧化石墨烯
毕 业 设 计 说 明 书 外 文 摘 要
Title Synthesis and Electrochemical Performance of Cobalt-based
Oxide/Carbon Composite Materials
Abstract
Zinc-cobalt oxides (ZnO-CoO) composite materials were synthesized by a facile hydrothermal method followed by an annealing process. The influences of reaction conditions on the morphology and electrochemical properies of zinc-cobalt oxides were also investigated.The optimal conditions were as follows: the hydrothermal time was 8 h, the hydrothermal temperature was 150 ℃.In a similar way, ZnO-CoO@C was prepared with the addition of PVP under the above optimal conditions. The morphology and structure of samples were analyzed by X-ray diffraction (XRD), Raman spectra, scanning electron microscope (SEM), transmission electron microscope (TEM), etc. Electrochemical tests were carried out in 2 M KOH electrolyte which revealed that the specific capacitance of ZnO/CoO@C was 196.4 F g-1 at the current density of 0.5 A g-1, and the retention of specific capacitance still reached as high as 97.5% after 25 000 cycles at the current density of 2 A g-1, indicating its extremely remarkable cycling stability. In order to improve the electorchemical properties, the precursor of ZnO/CoO@C were linked with graphene oxide by saline coupling agent. Then ZnO-CoO@C/RGO composite materials were prepared after a subsequent annealing treatment. We systematically investigated the electrochemical properties of ZnO-CoO@C/RGO composite materials as well.