(3)多尺度分割(Multiresolution Segmentation):多尺度分割是自下而上(bottom-up),在保证对象与对象之间平均异质性最小、对象内部像元之间同质性最大的前提下,通过合并相邻的像素或小的分割对象,基于区域合并技术实现影像分割。

3.1.1  多尺度分割

多尺度分割可以将不同对象通过分级方式置于同一图像中,并能够明确对象间的上下关系,提高了精度。因此本文选取多尺度分割技术进行下文的分割操作。

多尺度分割要求像素平均异质性最小。异质性标准包括形状和色调标准。形状标准是描述形状发生变化的一个值,它通过两个不一样的描述理想现状的模型来实现[5]。

多尺度分割是与知识无关的,在任何一种选定的尺度下进行的,原始影像对象的提取技术。是以异质性最小为原则的,将相似或相同像元集合到一起的区域合并算法。操作方法:第一,在将要进行分割的区域内找种子像元当作生长起点;第二,合并与种子像元有相同或相似性质的像元,并将合并后的作为新的种子像元;第三,重复以上步骤直到没有满足条件的像元[6]。这种方法对具有纹理信息的影像提取和对于根据特定任务从影像数据中去提取原始影像对象的比较适合。

上一篇:淮河流域水利旅游资源空间分布特征研究
下一篇:民俗旅游对大理当地文化的影响

汽车服务行业基于B2B3.0模式的供应链服务

面向智慧旅游的智能解说...

基于多案例分析法的跨境...

基于4I理论的网络营销策略...

基于互联网+的医疗旅游发...

老年人性犯罪的原因探析基于AGIL模型的分析

基于新媒体的社交关系对企业的影响和建议

老年2型糖尿病患者运动疗...

张洁小说《无字》中的女性意识

互联网教育”变革路径研究进展【7972字】

LiMn1-xFexPO4正极材料合成及充放电性能研究

网络语言“XX体”研究

ASP.net+sqlserver企业设备管理系统设计与开发

新課改下小學语文洧效阅...

安康汉江网讯

我国风险投资的发展现状问题及对策分析

麦秸秆还田和沼液灌溉对...