30

Band2 Blue 0。450–0。515 30

Band3 Green 0。525–0。600 30

Band4 Red 0。630–0。680 30

Band5 NIR 0。845–0。885 30

Band6 SWIR 1 1。560–1。660 30

Band7 SWIR 2 2。100–2。300 30

Band8 Pan                      0。500–0。680 15

Band9 Cirrus 1。360–1。390 30

2。3分类前的预处理论文网

首先对洪泽湖的高分一号以及TM影像进行几何校正处理,利用已经具备准确地理坐标和投影信息的影像,对洪泽湖遥感影像高分一号GF1以及TM影像Landsat8进行纠正,使它们具有准确的地理坐标和投影信息。其次对高分影像和TM影像进行辐射定标以及大气校正,大气校正使用ENVI软件中的FLAASH功能。

本文图像融合采用的方法是Gram-schmidt方法,将多光谱和全色波段进行融合,得到融合后分辨率为1米的GF2影像和分辨率为15米的Landsat8影像。

影像数据统一投影到WGS84—50N,然后进行图像镶嵌与裁剪,使用洪泽湖研究区域的矢量边界,对高分一号、高分二号以及TM影像中的感兴趣区进行裁剪,确定研究范围,得出所有影像的最终研究区域。图1为高分一号裁剪后成图。

图1  GF1洪泽湖裁剪图

2。4围网养殖区面积提取模型

2。4。1基于像元分类

传统意义上的监督与非监督分类方法都是基于像元的,像元是分类时的最小单元,主要考虑单个对象的光谱信息。

①督分类法

监督分类就是还不知类别的像元被已经确认类别的样本像元识别的过程。监督分类在遥感图像地物类别属性已经有了先验知识的基础上,从图像上选取所要划分的各类类别的一定数量的样本数据[1],建立模板,然后对其他的还未分类好的数据进行自动识别。

本文通过选取训练样本,建立分类模板,确定判别函数,采用最小距离判别规则对洪泽湖影像进行分类。所得分类结果分别如图2、3所示。

②非监督分类

非监督分类就是在多光谱图像中搜寻、定义其自然相似光谱集群的过程。非监督分类则和监督分类不同,在分类过程中,不加任何的先验知识,可凭借像元的光谱特征或者纹理进行特征提取,分类只需要统计特征的差别即可,最后一步就是对已经分出的所有类别的实际属性进行确认[1]。

非监督分类目前比较常见也较为成熟的是ISODATA、K-Mean和链状方法等。

本文采用的非监督分类方法是ISODATA,全称为“迭代自组织数据分析技术”。将Landsat8和GF1分别采用此种方法所得分类结果如图4、5所示。

   

        图2  Landsat8监督分类         图3  GF1监督分类

   

       图4  Landsat8非监督分类       图5  GF1非监督分类

2。4。2面向对象分类

面向对象分类把临近的像元集合起来作为对象来识别感兴趣的光谱要素,它以高分辨率影像丰富的光谱、纹理、结构、空间、形状以及图像中地物之间的信息,结合专家知识来进行分类,使分类后的结果有较高的精度以及丰富的语义,便于理解和解译[2]。它的过程主要有两个部分:影像对象构建以及对象的分类。

上一篇:基于遥感和GIS无锡市耕地景观格局分析
下一篇:微商困局原因探析及趋势分析

汽车服务行业基于B2B3.0模式的供应链服务

谈如何利用多媒体强化旅...

数字多媒体旅游咨询信息...

探究多元化生态旅游资源...

旅游管理應用型本科多元...

农业多功能视角的生态博...

构建多层次文化課程包 ...

ASP.net+sqlserver企业设备管理系统设计与开发

我国风险投资的发展现状问题及对策分析

张洁小说《无字》中的女性意识

网络语言“XX体”研究

LiMn1-xFexPO4正极材料合成及充放电性能研究

老年2型糖尿病患者运动疗...

麦秸秆还田和沼液灌溉对...

安康汉江网讯

互联网教育”变革路径研究进展【7972字】

新課改下小學语文洧效阅...