摘要近年来,以金属氧化物为正极、活性炭为负极的超级电容器因其具有高功率密度、价格低廉、寿命长等优点,而受到研究人员的广泛关注。尤其是以二氧化铅作为正极材料的电容器,正是因为PbO2电极表现出的特殊电化学性质,充分显示了它在电容器领域的应用前景,这引起了研究人员对该电极的关注,为了进一步提高电容器的电容性能,本文对PbO2电极进行了改进。86202
本文中,首先通过溶胶-凝胶法制备得到片状纳米级的三氧化钨粒子,再通过复合共沉积法将所制备的粒子掺杂到PbO2电极表面,进而得到WO3·H2O/PbO2复合电极材料。
为了分析复合共沉积的影响因素,探究该过程的沉积机理与孔隙率,本文通过循环伏安测试(CV)、线性电位扫描(LSV)等电化学测试分析研究其复合共沉积过程,实验表明,共沉积最佳温度为25 ℃,最佳电沉积电流为35 mA,随着纳米粒子浓度的增加,其掺杂的粒子量也随之增加并趋于一个极限值。
毕业论文关键词:三氧化钨;二氧化铅;复合共沉积;复合电极
Abstract In recent years, the hybrid supercapacitors, which were assembled with the metallic oxide as the cathode electrode and the activated carbon as the negative electrode, have been concerned because of its merits such as high power density, low cost and long cycle life。 Especially the lead dioxide with the special electrochemical properties was chosen as the cathode electrode, which shows its application prospect in the field of capacitor and causes our attention。 In order to improve its capacitor performance, we should improve the performance of lead dioxide electrode。
In this paper, plate-like tungsten oxide nanoparticles were synthesized by sol-gel method firstly, and tungsten oxide nanoparticles have been doped on the face of the lead dioxide electrode by compositing co-deposition method。 So that the WO3·H2O/PbO2 composite electrode materials were obtained。
In order to analyze the influencing factors of composite co-deposition, the deposition mechanism and porosity of the process, we commission a study into the process of compositing co-deposition and porosity by some electrochemical test, such as Cyclic Voltammetry (CV) and Linear Sweep Voltammetry (LSV)。 The result shows that the optimum temperature of co deposition was 25℃, the best current is 35 mA, and with the increasing of the concentration of nanoparticles, the amount of doped particles increases and tends to a limit value。
Keywords: Tungsten oxide; lead dioxide; composite co-deposition;composite electrode
目录
第一章 绪论 1
1。1 纳米WO3粒子的概述 1
1。1。1 纳米WO3粒子的制备 1
1。1。2 纳米WO3粒子的性质 2
1。1。3 纳米WO3粒子的应用 2
1。2 超级电容器的应用 3
1。3 PbO2电极材料概述 4
1。3。1 PbO2电极材料的结构与性质 4
1。3。2 PbO2电极材料的研究现状与发展 4
1。3。3 PbO2电极材料的制备 5
1。4 复合共沉积方法的概述 6
1。4。1 复合共沉积方法 6
1。4。2 复合共沉积方法的机理 7
1。4。3 复合共沉积方法的影响因素 7
1。4。4 孔隙率的研究