摘要:石墨烯独特的结构特征赋予其优异的物理和化学性能,如力学强度高、电子迁移速率快等。摻氮石墨烯因氮原子上孤对电子的存在改善了石墨烯的催化活性。将Ag纳米粒子负载在摻氮石墨烯上有利于提高其反应活性和稳定性。本文拟以氧化石墨为初始原料,尿素为氮源,采用水热反应一步制备掺氮石墨烯-Ag纳米颗粒复合材料,利用SEM和XRD分析其微观结构和形貌,确认复合材料的结构和组成。以制备的掺氮石墨烯-Ag纳米复合材料为催化剂,探讨其对硝基苯酚的催化性能。结果显示,掺氮石墨烯-Ag纳米复合材料对硝基苯酚与硼氢化钠的反应有很好的催化效果,酸性环境会大大加快反应进度,反应在15min,转化率高达94%。92642
毕业论文关键词:掺氮石墨烯-Ag纳米复合材料,硝基酚,水热反应,催化还原
Abstract:Due to its unique structure graphene possesses many excellent physical and chemical features, such as high mechanical strength, fast electron mobility。 In nitrogen doped graphene, the existence of lone pair electrons on the nitrogen atoms can improve its catalytic activity。 With its significant surface effect and quantum size effect, Ag nanoparticles have broad applications in the field of catalysis and biosensing。 Ag nanoparticles loading on graphene surface are more reactive and stable in catalytic reactions。 In this paper using graphite oxide as raw material and urea as nitrogen source nitrogen doped graphene-Ag nanocomposites were synthesized by hydrothermal method。 The microstructure and morphology of nitrogen doped graphene-Ag nanocomposites were characterized by SEM and XRD。 The as-prepared nitrogen doped graphene-Ag nanocomposites were used as catalyst to investigate catalytic performance toward the reduction of p-nitrophenols。 The results show that the addition of nitrogen doped graphene-Ag nanocomposites in the reacting system can accelerate the reaction rate, moreover, acidic environment can further fasten the reducing reaction rate。 The reducing efficiency is over 94% in 15 mintues。 源F于K优B尔C论V文N网WwW.youeRw.com 原文+QQ752^018766
Keywords: nitrogen doped graphene-Ag nanocomposite, p-nitrophenols, hydrothermal reaction, catalytic reduction
目 录
1 前言 3
1。1碳材料发展概述 3
1。2石墨烯的结构和性能 3
1。3石墨烯的制备 3
1。4石墨烯的应用 4
1。5石墨烯纳米复合材料的催化还原性能 4
2 实验部分 5
2。1 实验仪器和试剂 5
2。2 实验步骤 5
2。2。1 制备氧化石墨 5
2。2。2 制备掺氮石墨烯材料 6
2。2。3 Ag离子用量的确定 6
2。2。4 掺氮石墨烯-Ag纳米材料的催化实验 6
3 结果与讨论 6
3。1掺氮石墨烯-Ag纳米复合材料的合成及表征 6
3。2掺氮石墨烯-Ag复合材料对硝基苯酚的催化性能 8
3。2。1 无催化剂时硼氢化钠与硝基苯酚的反应 8
3。2。2 掺氮石墨烯-Ag复合材料对硝基苯酚的催化性能 9
3。2。3 溶液酸碱性对石墨烯-Ag纳米复合材料催化性能的影响