摘要:为了探索高固含量推进剂的热稳定性,为其在使用中提供更可靠的技术参数,本论文从研究其发生热分解过程、动力学的角度出发,探讨物质的热分解特性。分别采用差示扫描量热仪(DSC)和绝热加速量热仪(ARC)对该推进剂进行测试。采用Friedman和Ozawa法对DSC测试结果进行动力学分析,采用经典的速率常数法对ARC测试结果进行动力学分析并求得对应的表观分解活化能与指前因子。由DSC实验数据得到反应的起始分解温度约为150℃,反应过程中有5个放热峰,最大放热峰出现在450℃附近;基于Friedman和Ozawa法计算的表观分解活化能E为160~289kJ/mol,指前因子A为1。29×1013~2。47×1021s-1。由ARC实验数据得到该推进剂的起始分解温度T0为160。44℃,实验过程最大压力为7。6bar;其绝热分解产气量为13。6mol/Kg。基于速率常数法计算其绝热表观分解活化能为302。408 kJ/mol,指前因子为9。8×1019 s-1;基于修正后的数据计算其TD24为102℃。实验过程中发现由于样品的不均匀性导致了DSC实验较差的重现性,故采用较大实验药量的ARC实验数据来衡量该推进剂的热稳定性有较好的可信度。综合实验数据表明该推进剂的热稳定一般,一旦发生危害事故,其较高的热分解放热量与产气量会造成较大的危害。78128
毕业论文关键词 热分解 高估固含量推进剂 DSC ARC
毕业设计说明书外文摘要
Title Study on the thermal decomposition behavior of Propellant with high solid content
Abstract In order To study thermal stability of this Propellant with high solid content and give reliable technical parameters to the user, the thermal decomposition characteristics were discussed based on the results of DSC and ARC thermal analysis。 The DSC heat flow curves shown the T0 was 150℃, the maximum Tp was around 450℃ and the decomposition kinetics were estimated using Friedman and Ozawa method, while ARC data indicated the T0 was 160。44℃, the maximum pressure Pmax was 7。6bar, gas production was 13。6mol/Kg and the corresponding adiabatic decomposition kinetics were calculated by using conversion rate constant method based on the ARC data which was corrected。 DSC experiments shown that the poor reproducibility due to the non-uniformity of the sample, so the ARC experiments data has much more reliability than which of DSC experiments。 The results of DSC and ARC study as well as the thermal decomposition kinetics indicates the common stability of this kind of propellant, it would cause greater harm once decomposed because of the great heat and gas production during the thermal decomposition process。
Keywords Thermal decomposition characteristics Solid Propellant DSC ARC
目 次
1 绪论 1
1。1 研究意义及其背景 1
1。3 研究的对象及其内容 3
2 热分析理论基础及分析方法 4
2。1 热分析定义 4
2。2 常见热分析技术 4
2。2。1 差式扫描量热分析法(DSC) 4
2。2。2 绝热法(ARC) 5
2。3 热分析动力学及分析方法 5
2。3。1 热分析动力学理论基础 5