摘要 :水热法制备成功系列GO(r)-Zn1-xMnxFe2O4复合材料,采用XRD、SEM、BET、UV-vis等手段表征产物的形貌和结构。结果表明:复合材料中Zn1-xMnxFe2O4纳米颗粒均匀的附着在石墨烯表层;比表面积明显增大,最高达 108。9 m2/g。以可见光光催化降解亚甲基蓝为探针反应,考察了GO-Zn1-xMnxFe2O4光催化性能,采用循环伏安、恒电流充放电和交流阻抗测试方法对其电化学性能进行了研究。研究表明,在保持GO含量为25%的条件下,调节x=0。2,0。45,0。5,0。8,找到合成效果较佳的比为GO(0。25)-Zn0。5Mn0。5Fe2O4 ,降解率最高达94。21%,最高比容量为46。54F/g。在保持x=0。5时,通过调节GO的含量r=0。15, 0。2, 0。25, 0。3, 0。4, 0。5得到系列GO(r)-Zn1-xMnxFe2O4,最高降解率高达 96。15%,最高比容量为57。46 F/g。79081
毕业论文关键词: 氧化石墨烯 水热法 光催化 电化学
Abstract : GO(r)-Zn(1-x)MnxFe2O4 was successfully synthesized using Hydrothermal method。 The morphology and structure of the products were characterized by XRD, SEM, BET ,UV-vis methods 。The results showed that Zn(1-x)MnxFe2O4 nanoparticles was uniformly attached to the graphene surface and significantly increased its surface area (up to 108。9 m2/g) 。 Photocatalytic degradation of methylene blue under visible light was chosen as a model reaction to investigate the photocatalytic properties of the obtained products and the maximum degradation rate reached to 96。15%。 Cyclic voltammetry, galvanostatic charge-discharge test and AC impedance methods were studied to evaluate electrochemical properties of GO-Zn(1-x)MnxFe2O4。 Studies have shown that when adjusting x = 0。2, 0。45, 0。5, 0。8 with the GO content of 25% unchanged, the best ratio should be GO (0。25) -Zn0。5Mn0。5Fe2O4, and the highest degradation rate and the maximum capacity would be achieved (up to 94。21%, 46。54 F/g respectively)。 Under the the best ratio of Zn0。5Mn0。5Fe2O4, the content of GO was adjusted to obtain series of GO (r) -Zn1-xMnxFe2O4 with r = 0。15, 0。2, 0。25, 0。3, 0。4, 0。5。 The maximum degradation rate and the highest specific capacity could reached to 96。15% and 57。46 F/g。
Key words: Graphene oxide Hydrothermal Degradation Electrochemical
目录
1 绪论 1
2 实验方法 2
2。1 实验试剂 2
2。2 实验仪器 2
2。3 水热法制备铁酸锌锰-氧化石墨烯复合材料 2
2。4 可见光催化活性测试 3
2。5 电化学测试 3
2。5。1 电极的制作 3
2。5。2电化学性能测试 4
3 结果与讨论 4
3。1 GO-Zn1-xMnxFe2O4的表征及结果分析 4
3。1。1 GO-Zn1-xMnxFe2O4的X射线衍射测试 4
3。1。2 GO-Zn1-xMnxFe2O4 的BET表征分析 6
3。1。3 GO-Zn1-xMnxFe2O4的扫描电镜分析 7
3。1。3 GO-Zn(1-x)MnxFe2O4 红外光谱分析 7
3。1。4 GO-Zn(1-x)MnxFe2O4 紫外光谱分析 8
3。2 光催化结果讨论 9
3。3 电化学性能分析 13
3。3。1 循环伏安性能分析(CV) 13