摘要QAD程序是世界著名的运用点核积分进行计算的辐射屏蔽程序,它广泛应用于核电站、研究堆及其他各类核设施的的辐射屏蔽设计中。
本文以QAD-CGA为基础进行优化扩展。在程序调试运行成功后,扩展了单次计算所支持的剂量校核点数目和γ射线能谱数目,这种改进大大增强了计算能力。此外,本文实现了源强离散的自动化,简化了操作步骤,使用比较方便。在辐射源离散过程中,本文提出的算法根据源几何特点,实现了点核坐标分布的非等分离散,针对柱几何和球几何减小了由于辐射源离散在几何计算上带来的误差。26600
本文将介绍QAD-CGA程序的特点、原理和算法,针对关键算法,给出具体的流程图和计算示例;并通过算例对程序优化前后进行比较分析。
关键词 辐射屏蔽 点核积分 QAD 源强离散 优化 毕业论文设计说明书外文摘要
Title Program design and optimization of radiation shielding
Abstract
QAD program is a world famous radiation shielding program , using the point kernel integral method, which is widely used in radiation shielding design of nuclear power plants, research reactors and other types of nuclear facilities .
In this paper, based on QAD-CGA program, optimize and extend the program.After debugging program successfully, expanded the number of dose check points and the number of γ -ray spectrum in a single calculation, which improved greatly enhanced computing capabilities of the program. In addition, the paper realized the source intensity discrete automationin, simplification of the operation and more convenient to use . In the process that discrete radiation source, the proposed method based on the geometric characteristics of the source , to achieve a point kernel coordinate distribution which is discreted non-decile. For cylindrical geometry and spherical geometry reduces errors that is caused by source intensity discrete in geometry computing.
This paper describes the features, principles and algorithms of QAD-CGA program, for critical algorithms, give a specific flow chart and calculation example. Finally, gives comparison and analysis of the program which is before and after optimization by a numerical example.
Keywords radiation shielding Point kernel integration QAD
source intensity discrete Optimization
目 录
1 引言 1
1.1 课题研究背景 1
1.1.1 核电站辐射安全 1
1.1.2 点核积分技术 1
1.2 国内外研究现状 2
1.2.1 国外研究 2
1.2.2 国内研究 3
1.3 课题研究意义 4
1.4 本文的研究工作 5
1.5 本章小结 6
2 QAD程序的理论基础和技术方法 7
2.1 点核积分技术 7
2.1.1 点核积分 7
2.1.2 γ射线的计算 8
2.1.3 中子的计算 11
2.2 辐射源强及其离散 11
2.3 坐标变换法 14
2.4 光学距离与几何空间描述 15
2.4.1 光学距离 15
2.4.2 组合几何方法 15
2.4.3 入口距离、出口距离及穿行距离 16
2.5 射线跟踪法 16