摘要:本论文首先讨论了调和函数的最值原理及次调和函数导出的Perron族;然后通过Perron函数将Dirichlet问题的判定转化为了闸函数的存在问题,从而给出了有解性的充分条件;接着通过Green函数法给出了Dirichlet问题的一般解,并讨论了一些其他的边值问题;另外,本文还对调和测度做了一些讨论,并讨论了Phragmén-Lindelöf定理。
论文的主要结构如下:
第一章(绪论)介绍了调和函数的一些背景知识。
第二章讨论了调和函数自身的一些性质,主要根据次调和函数的性质引出了Perron族,以此来解决Dirichlet问题。
第三章主要运用Green函数法来讨论Dirichlet问题,并讨论了其他边值问题。
第四章主要讨论调和测度和讨论了Phragmén-Lindelöf定理。
关键词 调和函数 边值问题 Green函数 极值原理 5600
毕业设计(论文)外文摘要
Title Properties and Application of Harmonic Functions
Abstract
In this paper,we firstly discussed the maximum principle of harmonic functions and the Perron family deduced by subharmonic functions.Then we transformed the judgment of the Dirichlet problem to the existence of barrier function by using Perron family,thus we got the sufficient condition of the solution of the Dirichlet problem.Then we utilized the Green's function method to obtain the general solution of the Dirichlet problem,and we also discussed some other boundary value problems.In the end,we discussed the Harmonic Measure and discussed the Phragmén-Lindelöf theorem.
The paper mainly consists of the following parts:
Chapter one introduced some background knowledge of the harmonic function;
Chapter two discusses some properties of harmonic functions,and deduced Perron family by the nature of subharmonic functions,which we could use to solve the Dirichlet problem.
Chapter three mainly used the Green's function method to discuss the Dirichlet problem,and also discussed some other boundary value problems.
Chapter four mainly discussed the Harmonic Measure and discussed the Phragmén-Lindelöf theorem.
Keywords harmonic function; boundary value problem; Green's function; Maximum principle
目 次