摘 要:圆锥曲线的伴随曲线是数学教学的重要内容之一。所谓伴随曲线就是对于已知平面曲线C上的各点M,取同一平面上的点P和它对应,即M→P。当点M在曲线C上移动时,点P一般也要伴随点M而运动,设点P的轨迹为C',则C'为C的伴随曲线,M和P互为相伴点。本毕业论文主要运用化归、类比归纳、数形结合等数学方法,从具体案例出发,进行详细的思路分析,归纳总结了圆锥曲线的伴随曲线的应用与解题方法。关键字:圆锥曲线 伴随曲线 应用 方法8904
Conic Curve with Curve
Abstract: Conic curve with curve is one of the important contents of mathematics teaching.The so-called with curve is known for each point on the plane curve C M, take point P on the same plane and its corresponding, namely, M - P.As it moves, a point M on the curve C P generally also to accompany the point M and movement, second-hand P track for C ', is C 'for C with curve, M and P are concomitant point.In this paper, the main use of transforming, induction, analogy number form combined with the mathematical methods, such as, starting from the specific case, a detailed analysis, summarized the conic along with the application of curve and the problem solving method.
Key words: conic;Along with the curve;application;means.
目 录
摘要1
引言2