Xiao等[14] 在水热合成Fe2O3/石墨烯复合材料的过程中加入PVP,搅拌混合,在160℃下反应12h,得到石墨烯包裹的Fe2O3纳米粒子,包裹层厚约为0.27nm,将该种复合材料装配成电池时,可逆电容达到1005mAh/g。同时,因为这种结构的稳定性也表现出了突出的协同效应,进一步提高其电化学性能。
3介孔材料的制备
介孔材料的制备方法主要有水热合成法,溶胶-凝胶法和模板合成法等。
Hong等[15]使用溶胶一凝胶法,使用KMnO4和马来酸为原料制备出了比表面积为297m2/g,孔径大小为0.7~6.0的介孔MnO。Wang等使用模板合成法制备出介孔TiO2,它的比表面积和平均孔径在300℃和350℃不同条件下煅烧后的大小也不同。
Ryoo R等[16]首次以分子筛MCM-48为模板,蔗糖为碳源,成功合成了有序介孔碳CMK-1,但CMK-1与MCM-48孔道结构完全不同,不是MCM-48真正的复制品,在脱除MCM-48硅模板过程中,孔道有序性下降。
HMS合成条件较温和,所用长链伯胺模板剂易回收,在实际应用中具有较大吸引力。Lee J等以富醇介质合成的HMS分子筛为模板,酚醛树脂为碳前驱体合成了介孔碳材料SNU-2,但该碳材料中不存在织构孔。Sevil-Lam等以富水介质HMS分子筛为模板,制备了含有较大孔容、比表面积和较窄孔径分布的双孔隙碳材料。
合成无序介孔碳材料所用模板主要有二氧化硅纳米粒子或晶体、硅胶、阳性氧化铝和铝硅酸盐等。Han S J等[17]以二氧化硅水溶胶纳米粒子作模板,制备了纳米孔碳SMC-1,但其孔径分布相当宽,可能是合成过程中硅纳米粒子团聚所致,为了阻止合成过程中硅纳米粒子发生团聚,在反应体系中加入十优尔烷基三甲基溴化铵,成功得到孔径分布较窄的介孔碳SMC-2。
Yuan和Li等[18]合成了碳包覆Fe3O4微粒。以a-FeOOH为前体,通过两步水热反应后煅烧得到最后的Fe3O4 /C复合材料。电化学测试后得到其比电容为1010mA·h/g,比Fe3O4的理论容量928mA·h/g还要高。该合成过程分为4 步.
第一步,将含Fe3+溶液加入到过量的含OH-的溶液中不断地搅拌,并延长反应时间,生成了纳米颗粒的FeHO8 ·4H2O。
第二步,生成的纳米颗粒通过Ostwald熟化过程[19]将纳米颗粒聚集成纳米线。该过程水热反应在180℃的条件下处理25h,可以加强结晶和纳米线的生成质量,产生a-FeOOH。
第三步,以葡萄糖为前体,在180℃条件下水热反应2h。a-FeOOH的表面含有大量的羟基基团,可以诱导碳质材料在其表面以原位沉淀的形式形成一层碳质外壳。最后,将得到的沉淀物在充分洗涤并烘干以后,在500℃的N2气氛炉内煅烧4 h,形成外表为碳层、内部是介孔Fe3O4的复合材料。因为从a-FeOOH中转移走了羟基基团同时又产生了气体,导致介孔的形成。
12a-FeOOH + C →24Fe3O4 + 6H2O + CO2
如果没有包覆碳层的话,将会形成a-Fe2O3纳米线,通过500℃的气氛炉内加热4h,可以形成很好的纳米线材料。虽然在这样的条件下可以形成很好的纳米结构,但是没有进行碳包覆,比电容仅为100 mA·h/g,远远低于Fe3 O4 /C复合材料。
Su和Li等[19]提到了一种以石墨烯为基质的碳包覆Fe3 O4 颗粒的多层结构的复合材料Graphene/Fe3 O4 /C。可以看出来,Fe3 O4颗粒均匀地分布在石墨烯薄片上。由电化学测试可知,其比电容在循环100 圈以后仍然可以达到920mA·h/g。说明该复合材料作为电极材料时表现出优越的电化学性能,其原因有如下几点可能:①Fe3 O4 纳米颗粒外面的碳层使其固定在石墨烯的表面,从而Fe3 O4 颗粒可以完全释放出其电化学性能;②Graphene/Fe3 O4 /C中的碳层外壳可以改善该复合材料的导电性能,使其可以快速地充放电;③由于碳层的存在,可以使复合材料的外表面形成一层均匀且薄的SEI 膜,避免该电极在第一次充放电过程中的能量损失。
- 上一篇:光伏产业文献综述和参考文献
- 下一篇:利率决定理论文献综述和参考文献
-
-
-
-
-
-
-
g-C3N4光催化剂的制备和光催化性能研究
高警觉工作人群的元情绪...
C++最短路径算法研究和程序设计
NFC协议物理层的软件实现+文献综述
浅析中国古代宗法制度
上市公司股权结构对经营绩效的影响研究
巴金《激流三部曲》高觉新的悲剧命运
江苏省某高中学生体质现状的调查研究
中国传统元素在游戏角色...
现代简约美式风格在室内家装中的运用