摘要慢光技术是实现全光网络中光缓存器的关键技术,而用光子晶体实现慢光则是一种非常重要的方法。本文以二文三角晶格介质柱光子晶体为研究对象,针对线缺陷和耦合缺陷,通过平面波展开法(PWE)对光在波导中传输的慢光特性进行仿真模拟。仿真结果表明,对于线缺陷,随着缺陷柱尺寸的减小,波导中的导模群速度也在减小;耦合缺陷中导模曲线随缺陷柱尺寸的关系则会复杂一些,随着缺陷柱尺寸减小,导模群速度会先变小再变大。最后,我们还研究了一种改变缺陷行距相邻两行介质柱间距d的新型缺陷波导,并通过模拟找到了慢光特性最好时的d值,结合群速度色散(GVD)分析,发现极慢光区域的GVD值在106量级左右,能够保证光波的高效传输。25860
关键词 光子晶体;群速度;群速度色散;慢光;平面波展开法 毕业论文设计说明书外文摘要
Title Characteristics of Slow Light in Photonic Crystal Waveguides
Abstract
Slow-light technology is a key technology for realizing optical buffers in all-optical networks. And it is an important way to achieve the technology in photonic crystals. Based on two-dimensional triangular lattice media column photonic crystal, Plane-Wave Expansion is adopt to simulate the performance of the light of the slow-light transmission properties of the waveguide, which concerns line defects and coupling defects. The result shows that the group velocity of the guided mode waveguide is reduced as the size of the defected column decreases in line defected waveguides. While in coupling defected waveguides, it is a little bit complex because the velocity is smaller and then larger as the size decreases. Finally, we studied a new defected waveguides in which the distance between the lines of the columns next to the line where defected column is can be changed. And then the proper value of the distance is determined with simulation. In such condition, the guided modes perform best. Combined with the group velocity dispersion,it shows that the GVD is in the order of 106 of the slow light region ,which ensures the efficient transmission of the light.
Keywords photonic crystals;group velocity;group velocity dispersion;slow light;Plane-Wave Expansion
目 录
1 引言 1
1.1 绪论 1
1.2 主要研究内容及结构安排 1
2 二文光子晶体的理论分析方法 2
2.1 几种常用的理论和数值方法 2
2.2 平面波展开法的推导 2
3 缺陷柱尺寸对慢光特性的影响 6
3.1 二文光子晶体线缺陷波导 6
3.2 二文光子晶体耦合缺陷波导 11
3.3 本章小结 15
4 缺陷行距相邻两行介质柱距离d对慢光特性的影响 17
4.1 距离d对线缺陷的影响 17
4.2 距离d对耦合缺陷结构的影响 19
4.3 本章小结 25
结 论 27
未来展望 28
致 谢 29
参考文献30
1 引言
1.1 绪论
1.1.1 光子晶体简介
光子晶体的概念是在1987年提出的,作为一种新的人工材料,它由多种不同介电常数的材料在空间作周期性排列形成。得益于光子晶体介质周期性结构,它会产生使得任何频率的光都无法在其中传播的带隙。如果我们再人为去破坏光子晶体中的介质周期性结构,便能够实现在带隙中出现平坦导模,并且其群速度较小,也就是说,实现了慢光[1~2]。