摘要在微流控芯片中利用TiO2/K2Gr2O7催化体系进行光催化降解水样中有机物,及检测。本文采用纳米二氧化钛粉末涂覆法制备纳米TiO2微流控芯片,并以UV-LED为光源,制备光催化微反应器。以K2Cr207为光催化氧化剂,在光强为80 mw/cm2,温度为35℃时,最佳的COD降解条件为:K2Cr207浓度0.125mol/L,H2SO4浓度0. 2mol/L,流速为750μL/h。在该条件下COD线性范围为20-1000mg/L。应用本方法测定实际污水样,与国家标准分析方法测定结果的相对误差13.6%,加标回收率达129.5%。62396
Abstract Photocatalytic degradation of organic compounds in water samples by using TiO2/K2Gr2O7 as catalyst system in microfluidic chips, and on line detection were inestigated. In this paper, nano-titanium dioxide-coated microfluidic chip was used as photocatalytical reactor, and UV-LED used as the light source. When using K2Cr207 as the photocatalytic oxidation agent, the light intensity being 80 mw/cm2 and the temperature being 35℃, the optimized COD degradation condition was: C K2Gr2O7: 0125mol / L, CH2SO4: 0. 2mol / L, flow rate: 750μL/h. The linear range for COD determination was 20–1000m g/ L. The method was applied for the determination of COD in wastewater samples, which had a relative error of 13.6% with the standard COD detection method. The coefficient of recovery of the proposed method was 129.5%。
毕业论文关键词:纳米二氧化钛;微流控芯片; 光催化降解; COD测定
Keywords: nano-titanium dioxide; microfluidic chip; photocatalytic decomposition; COD Determination
目录
1 前言 5
2 实验部分 7
2.1 仪器与试剂 7
2.1.1 仪器 7
2.1.2 试剂 7
2.2 实验步骤 8
2.2.1 备用母液的配制 8
2.2.2 光催化反应装置及流程 8
2.2.3 实际样品测定及加标回收率测定 9
2.2.4 COD标准测定方法(库仑滴定法) 9
3 结果与讨论 10
3.1 光催化微反应器中COD测定原理 10
3.2 光催化降解条件的影响 10
3.2.1 反应温度 10
3.2.2 光照强度 11
3.2.3 注射泵流速的影响 11
3.2.4 硫酸浓度的影响 12
3.2.5 重铬酸钾浓度的影响 12
3.3 标准曲线 13
3.4 与标准方法比较及加标回收率计算 13
4 结论 14
1