摘要:机械臂是现代社会的代表科技产品,代表了人工智能的较高程度。它的应用十分广泛,涉及到了各行各业当中,机械臂的轨迹规划问题也是世界各国科研工作者的重要研究问题。本文以abb1410六轴机械臂为研究对象,介绍了一些关于机械臂在空间坐标下的齐次变换的基础知识,简单的阐述了roboticstoolbox的特点,也讲解了关于使用D-H建模的注意事项的基本步骤。依据它的结构参数,建立它的D-H模型,并对它进行正、逆运动学分析。
之后介绍了建立动力学方程的一些常见方法,如牛顿-欧拉方程、拉格朗日方程、凯恩方程。然后本文根据杆件的几何参数和惯性参数,选用拉格朗日方程法来建立机械臂各关节的动力学方程。
接下来通过多种算法的对比选择使用B-样条轨迹规划,详细讲解了遗传算法的基本原理,对得到的轨迹进行能量优化,最终通过MATLAB结合Adams进行仿真。
关键词:轨迹规划;遗传算法;动力学;运动学
Abstract:Robot arm is a representative of modern society technology products, representing a higher degree of artificial intelligence. Its application is very extensive, involving all walks of life, and the trajectory planning problem of robot arm is an important research question belonging to the world's scientific research workers. The paper selects Abb1410 six-axis manipulator as the studying object, and introduces some of basic knowledge the robot arm in the spatial coordinates of the homogeneous transformation, and includes a brief description of the characteristics of the robotics toolbox and the use of basic steps of DH modeling precautions. Based on its structural parameters, its D-H model is established and subjected to positive and inverse kinematics analysis.
Then the paper introduces some common methods of establishing dynamical equations, such as Newton-Euler equation, Lagrangian equation and Kane equation. Then the paper selects Lagrangian equation Method to establish the mechanical arm of the joints of the dynamic equation according to the geometric parameters of the bar and inertia parameters.
The B-spline trajectory planning is selected by contrasting the algorithm, and the basic principle of the genetic algorithm is explained in detail. The energy of the obtained trajectory is optimized and finally simulated by MATLAB combined with Adams.
Keywords:Trajectory planning; dynamics; genetic algorithm; kinematics
目录
第一章绪论 1
1.1课题的研究背景和意义 1
1.2.1国外轨迹规划研究现状 2
1.2.2国内轨迹规划研究现状 4
1.3课题研究目标及研究内容 5
1.3.1课题研究目标 5
1.3.2课题研究内容 5
1.4本章小结 5
第二章 运动学分析 6
2.1位姿描述及齐次变换 6
2.1.1位姿描述 6
2.1.2刚体姿态描述 6
2.2机器人运动学分析 7
2.2.1机械臂运动学模型 7
2.3 逆运动学分析 9
2.4本章小结 13
第三章 动力学分析