摘要桥式起重机主要用于工地,码头,机械制造车间等运输和起吊重物,而起重用减速器需要有承载能力高,体积小,效率低,振动小等特点。现阶段,为了保证起重机的安全性与可靠性,一般都配置两台减速机,但是结构复杂,承载能力有限。众所周知,差动轮系有两个自由度,可以实现两个运动方向,行星轮系具有结构紧凑,质量小,承载能力大,传动范围广的特点。本课题目的是寻找一种工作可靠,实现两种转向,多种转速,体积小的一体化设计的起升机构减速器。最终本课题提出两起重机用差动行星减速器方案,由锥齿轮差动轮系模块,定轴轮系模块和输出调速模块组成。通过SolidWorks和Adams构建减速器虚拟样机模型 , 对两种设计方案进行运动学和动力学仿真分析 , 研究动态啮合过程中的速度 、轮齿啮合力 、啮合频率等 ,为减速器优化设计和工程分析提供依据。82778
毕业论文关键词:起重机 减速器 差动行星 动力学分析
Abstract The bridge crane is mainly used for transporting and lifting heavy objects in the site, wharf, mechanical manufacturing workshop and so on,The hoist reducer need to have high bearing capacity, small size, low efficiency, small vibration and so on。At this stage, in order to ensure the safety and reliability of the crane, it is generally equipped with two speed reducer, but the structure is complex and bearing capacity is limited。As is known to all, differential gear train with two degrees of freedom, can achieve two direction of motion and planetary gear has the advantages of compact structure, small mass, large carrying capacity, transmission of a wide range of characteristics。 The purpose of this study is to find a reliable, two kinds of steering, a variety of rotational speed, small size of the integrated design of gear reducer for lifting mechanism 。Finally this paper proposed crane two differential planetary deceleration device scheme, by the bevel gear differential module, fixed axis gear train module and output control module composition。By using SolidWorks and Adams to build the virtual prototype model of reducer is, the two design schemes of kinematics and dynamics simulation analysis and research in the dynamic meshing process speed, meshing force and meshing frequency, the reducer optimal design and engineering analysis provides the basis。
Key word:crane, reduce, differential plant, dynamics analysis
目 录
第一章 绪论 2
1。1研究背景 2
1。2。1国内研究现状 3
1。2。2国外研究现状 5
1。3选题的目的与意义 5
1。4主要研究内容 6
第二章 新型减速器的方案设计 6
2。1新型减速器方案 6
2。1。1前言 6
2。1。2新型减速器的设计方向 7
2。1。3新型减速器方案 7
2。1。4小结 8
2。2电机的选择 9
2。3功率分析 9
2。4传动零件的设计 10
2。4。1定轴齿轮和中介轮 10
2。4。2锥齿轮计算 13
2。5传动轴的设计