摘要:组蛋白(histones)为真核生物体细胞染色质中的碱性蛋白质和基本结构蛋白,含较多精氨酸和赖氨酸等碱性氨基酸,二者加起来约为所有氨基酸残基的1/4。因其氨基酸成分和分子量不同,主要分成5类:H1、H2A、H2B、H3、H4。它们富含带正电荷的碱性氨基酸,能够同DNA中带负电荷的磷酸基团相互作用[1]。而本实验涉及到的酵母组蛋白是一种有别于其他动物组织的组蛋白,它属于真核生物,在提取其组蛋白时,需要破裂其组织细胞壁。提取之后,再利用一种高效又普遍的方法进行蛋白的测定——过程包括考马斯亮蓝染色、蛋白质印迹法(western blot)转膜后杂抗体(一抗和二抗);通过IMAGE影像曝光法,最后得出蛋白条带的曝光图[2]。5674
关键词:酵母组蛋白的提取;破裂细胞壁;蛋白质印迹法;杂抗体;曝光;
Optimization and Exploration Of the Extraction Method on Yeast Histone
Abstract: Histone is the basic protein and basic structure in eukaryotic somatic chromatin, containing more basic amino acids such as arginine and lysine, which add up to approximately one forth of the total amino acid residues. Due to its different amino acid composition and molecular weight, it can be pided into five categories: H1, H2A, H2B, H3 and H4. They are rich in basic amino acid with a positive charge, so they can have the interaction with the phosphate groups which are negatively charged in DNA. This experiment is related to the yeast histone which is different from those of other animal tissues. It belongs to the eukaryotic. It is necessary to rupture the cell wall of the organization when extracting its histone. After this kind of process, then detect the histone with a general and efficient method, including Coomassie blue staining, Western blot, film transferred, using antibodies(the primary and secondary antibody) and image exposure. At last, we can have the protein bands exposure map.
Keywords: the extraction of the yeast histone; rupture the cell wall; western blot; the use of the antibody; exposure