第三章 数形结合

(1)描述:

数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。中学数学研究的对象可分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合。作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等。我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休。”“数”与“形”反映了事物两个方面的属性。我们认为,数形结合,主要指的是数与形之间的一一对应关系。数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而实现优化解题途径的目的。

(2)概念说明文献综述

数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。

所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3)曲线与方程的对应关系;以几何元素和几何条件为背景建立起来的概念,如复数、三角函数等;(5)所给的等式或代数式的结构含有明显的几何意义。如等式 。

纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”

上一篇:数学语言表达在中学数学教师课堂教学中的案例探索研究
下一篇:中外大学数学教学课堂的比较研究

浅谈中学数学函数最值问题的求解方法

浙教版人教版初中数学教...

数形结合在中学数学中的...

浅谈圆周率

中美小学数学课堂教学的比较

论数形结合在中学数学教育中的应用

小学数学教师在学生心目中的形象

LiMn1-xFexPO4正极材料合成及充放电性能研究

老年2型糖尿病患者运动疗...

ASP.net+sqlserver企业设备管理系统设计与开发

安康汉江网讯

张洁小说《无字》中的女性意识

新課改下小學语文洧效阅...

网络语言“XX体”研究

我国风险投资的发展现状问题及对策分析

互联网教育”变革路径研究进展【7972字】

麦秸秆还田和沼液灌溉对...