摘要圆周率π是数学中最重要的常数之一,而对圆周率的研究也长久受到数学界的关注。本 文计划在前人的工作基础上,从圆周率本身出发,从数学史的角度尽可能地对圆周率的相关结果进行整理,也加深了对圆周率的认识。本文计划四部分展开。首先从圆周率的定义开始, 从我们最初接触到的圆周率到我们在高等数学中看到的圆周率,并介绍圆周率的名称历史。89105
其次根据人们对π由浅入深的认识分为四个时期,分别为:人文初始、无理数时期、超越数时期、寻找新规律时期。再根据圆周率的不同计算方法分为经验推测法、几何法、分析法求 π值及电子计算机求π值。其后分析法建立,根据时间顺序列出一系列分析法求π的表达式。 再简单介绍编程求π的方法及 21 世纪求π值的情况。最后一部分主要介绍几个典型的和π相关的数学公式以及定理。
Abstract Pi is one of the most important constants in mathematics, and the study of Pi has received the attention of mathematics for a long time。 This article plans to work on the basis of predecessors, from Pi itself and the perspective of mathematical history to collect the relevant results of Pi as far as possible。 It can also deepened our understanding of pi。 This article plans four parts to unfold。 First of all, it introduces the definition of Pi。 From the first contact with the PI to we meet the Pi in Higher Mathematics。 Then it introduces the name of history of Pi。 Secondly, according to people's understanding of π –digest, the research on Pi is pided into four periods。 Respectively: Humanities initial, unreasonable number period, surpassing several times, looking for new law period。 According to the different calculation methods of pi, it is pided into empirical speculation, geometric method and analytic method to calculate PI value and computer value。 With the analytic method established, the expression of pi is calculated according to the sequence of time。 This paper briefly introduces the method of programming pi and the situation of the value of pi in 21st century。 The last part mainly introduces several typical mathematical formulas and theorems related to π。
毕业论文关键词:圆周率; 伯努利数; 黄金分割;逼近
Keyword: PI; Bernoulli numbers; golden section;approximation
目录
1。 引言 1
2。 圆周率概述 1
2。1 圆周率源Y于U优I尔O论P文W网wwW.yOueRw.com 原文+QQ75201-8766 的定义 1
2。2 圆周率的名称[1] 2
3。 圆周率的研究历史 3
3。1 人文初始 4
3。2 无理数时期 4
3。3 超越数时期 6
3。4 寻找新规律时期 6
4。 圆周率的计算