[2]孙晓昆,谢保华.电点火技术用Cu2O型和SiC型半导体陶瓷材料.火花塞与特种陶瓷,1996,3:25-26.
[3]陈德安,欧光南,翁玉攀,等.由甲醇与丙酮合成甲基乙烯基酮铜基催化剂的研究.厦门大学学报(自然科学版),1994,33(4):481--487.
[4]刘静峰,田德余,邓鹏图.超微细Cu2O对RDX/AP/HTPB推进剂组分热分解特性影响的研究.火炸药学报,1998,21(2):1"-4,9.
[5]天津化工研究院等.无机盐工业手册(下册).北京:化学工业出版社,1981:521-522
[6]李树元,梅光军,金玉健.纳米氧化亚铜的制备方法研究.材料导报,2005,l 1(19):147.149.
[7]. Abdu, Y.; Musa, A. O. Copper (I) Oxide (Cu2O) Based Solar Cells - A Review. Bajopas 2009, 2, 8–12.
[8]. Georgieva, V.; Tanusevski, A.; Georgieva, M., Low Cost Solar Cells Based on Cuprous Oxide. In Solar Cells - Thin-Film Technologies; Kosyachenko, L. A., Ed.; InTech, 2011.
[9]. Xiong, L.; Huang, S.; Yang, X.; Qiu, M.; Chen, Z.; Yu, Y. p-Type and n-type Cu2O Semiconductor Thin Films: Controllable Preparation by Simple Solvothermal Method and Photoelectrochemical Properties. Electrochim. Acta 2011, 56,2735–2739.
[10]. Hara, M.; Kondo, T.; Komoda, M.; Ikeda, S.; N. Kondo, J.;Domen, K.; Hara, M.; Shinohara, K.; Tanaka, A. Cu2O as a Photocatalyst for Overall Water Splitting under Visible Light Irradiation. Chem. Commun. 1998, 357–358.
[11]. Kuo, C. H.; Chen, C. H.; Huang, M. H. Seed-Mediated Synthesis of Monodispersed Cu2O Nanocubes with Five Different Size Ranges from 40 to 420 nm. Adv. Funct. Mater.2007, 17, 3773–3780.
[12]. Kuo, C.-H.; Huang, M. H. Facile Synthesis of Cu2O Nanocrystals with Systematic Shape Evolution from Cubic to Octahedral Structures. J. Phys. Chem. C 2008, 112, 18355–18360.
[13]. Ho, J.-Y.; Huang, M. H. Synthesis of Submicrometer-Sized Cu2O Crystals with Morphological Evolution from Cubic to Hexapod Structures and Their Comparative Photocatalytic Activity. J. Phys. Chem. C2009,113,14159–14164.
[14]. Xu, H.; Wang, W.; Zhu, W. Shape Evolution and Size-Controllable Synthesis of Cu2O Octahedra and Their Morphology-Dependent Photocatalytic Properties. J. Phys.Chem. B 2006, 110, 13829–13834.
[15]. Zhang, J.; Liu, J.; Peng, Q.; Wang, X.; Li, Y. Nearly Monodisperse Cu2O and CuO Nanospheres: Preparation and Applications for Sensitive Gas Sensors. Chem. Mater. 2006,18, 867–871.
[16]. Shishiyanu, S. T.; Shishiyanu, T. S.; Lupan, O. I. Novel NO2 Gas Sensor Based on Cuprous Oxide Thin Films. Sensor.Actuat. B: Chem. 2006, 113, 468–476.
[17]. Xu, Y.; Wang, H.; Yu, Y.; Tian, L.; Zhao, W.; Zhang, B. Cu2O Nanocrystals: Surfactant-Free Room-Temperature Morphology-Modulated Synthesis and Shape-Dependent Heterogeneous Organic Catalytic Activities. J. Phys. Chem.C 2011, 115, 15288–15296.
[18]. White, B.; Yin, M.; Hall, A.; Le, D.; Stolbov, S.; Rahman, T.;Turro, N.; O'Brien, S. Complete CO Oxidation over Cu2O Nanoparticles Supported on Silica Gel. Nano Lett. 2006, 6,2095–2098.
[19]. Morales, J.; Sánchez, L.; Bijani, S.;Martínez,L.;Gabás,M.;Ramos-Barrado, J. R. Electrodeposition of Cu2O: An Excellent Method for Obtaining Films of Controlled Morphology and Good Performance in Li-Ion Batteries. Electrochem.Solid State 2005, 8, A159–A162.
[20]. Dong, T. Y.; Wu, H. H.; Huang, C.; Song, J. M.; Chen, I. G.; Kao,T. H. ctanethiolated Cu and Cu2O Nanoparticles as Ink to Form Metallic Copper Film. Appl. Surf. Sci. 2009, 255, 3891–3896.
[21]. Lee, Y.-J.; Kim, S.; Park, S.-H.; Park, H.; Huh, Y.-D. Morphology-Dependent Antibacterial Activities of Cu2O. Mater.Lett. 2010, 65, 818–820.
[22]. Ristov, M.; Sinadinovski, G.; Grozdanov, I. Chemical Deposition of Cu2O Thin Films. Thin Solid Films 1985, 123, 63–67.