摘要在本文中,我们研究了四阶参数化非线性薛定谔方程,这是从光学和 超冷物理场景中的常规含 3 次五次方公式得到的。我们通过修正傅里
叶展开法得到四阶含 3 次 5 次方非线性薛定谔方程的精确解,确定了 在某些外部实验设置下的特殊亮孤子行为,系统的特定非线性特征可 以证明这点。在包括四阶广义的一维(1D)的框架内的非线性薛定谔 方程(GNSE)色散效应和立方五次局部非线性后,我们对一类新的亮 孤子进行了研究,该类孤子在空间(或时间)的坐标(啁啾孤子)非 线性变化引起相变。确切的啁啾孤子解提出在广义非线性薛定谔方程 系数的一些固定的比例。分析方法(包括变分方法)应用到预测啁啾孤 子与普通孤子的稳定性存在的条件上。
广义非线性方程薛定谔的解析解承认在四阶色散存在亮光孤子。 包络孤子表示为双曲正割的平方。峰值功率与孤子的持续时间被唯一 定义。数字的模拟往往表明:当引入一个弱三阶色散时,瞬时形状和 孤子的峰值功率是稳定的。我们研究高阶非线性薛定谔方程孤立波解的新 类型,该方程描述在某些参数条件下光纤中的飞秒光脉冲传输。不同于报道的高 阶非线性薛定谔方程的孤立波解,新类型的解可以在同一个表达式描述亮孤波和 暗孤波的属性,当时间变量趋于无穷大时其幅度可能接近非零。这种解不能存在 于非线性薛定谔方程。此外,我们可以采用数值模拟方法在一些初始扰动情况下 研究这些孤立波的稳定性。80969
毕业论文关键词 高阶非线性薛定谔方程 , 修正傅里叶展开法, 孤立波
Abstract In this paper, we study the fourth-order parametric nonlinear Schrodinger equation, which is generated from the optics and ultracold physics scene containing conventional three quadrillion equation。 Fourth - order exact solutions are obtained for cubic and quintic power nonlinear Schrodinger equation by correcting the Fourier expansion method。 We determine the special bright soliton behavior under certain external setting, the particular characteristics of non-linear systems can prove it 。 Including nonlinear Schrodinger equation (GNSE) in the fourth-order generalized one-dimensional (1D) framework and local nonlinear dispersion effect cubic-quintic terms, a new class of bright solitons have been studied, such solitons in space (or time ) nonlinearly vary with the coordinates (solitons) caused by a phase change。 The exact solitons solutions put forward some fixed proportion of generalized nonlinear Schrodinger equation coefficients。 Analytical methods (including variational methods) are applied to predict the conditions for the existence and stability of solitons。
Analytical solution of generalized nonlinear Schrodinger equation acknowledged the existence of solitons in the fourth order dispersion light。 Envelope soliton represented as hyperbolic secant squared。 Soliton peak power and duration to be uniquely defined。
Digital simulations tend to show: When introducing a weak
third-order dispersion, shape and peak power instantaneous soliton is stable。 We study a new type of solitary wave solutions of higher order nonlinear Schrodinger equation, which describes femtosecond optical pulses under certain parameter conditions in the fiber。 Solitary wave solutions different from the reports of higher order nonlinear Schrodinger equation, the solution may be a new type of expression that describes the properties of solitary waves bright and dark solitary waves in the same, when the time tends to infinity its variable rate may be close to zero。
Keywords :HigherOrderNonlinearSchrodingerequation ,solitary
wave,