摘要:超级电容器是现代电动车电池研究的核心技术关键,超级电容器的电极材料的性能是重点研究领域。金属氧化物是目前超级电容器常用电极材料的三大类型之一,本文选用了水热法一步合成了钴镍复合氧化物,经过X射线衍射分析(XRD)、扫描电镜(SEM)对产物的形貌与结构进行分析,采用了循环伏安曲线和恒流充放电法探讨其在三电极体系中的电化学性能。研究发现,水热温度的变化,对产物的形貌变化并不是很明显,水热后经过300摄氏度热处理能获得钴酸镍产物,镍钴金属离子摩尔比为1:2;而比例的变化获得多种形貌的产物,由片状到片状组装牡丹花结构。电化学测试结果显示:当水热温度为120摄氏度时,金属离子比例为1:1时,牡丹花状的钴镍复合氧化物的氧化还原峰最高,表现出好的准可逆特性和最高的比电容。80812
毕业论文关键词: 二元金属氧化物;镍钴比;水热合成温度;电极材料
Preparation of Nickel Cobalt Oxide with Different Morphology and Structure
Abstract: Super capacitor is the key technology of modern electric vehicle battery research。 The performance of super capacitor electrode material is the key research field。 Metal oxide is one of the three main types of electrode materials commonly used in super capacitors。 In this paper, cobalt-nickel composite oxides were synthesized by hydrothermal method。 X-ray diffraction (XRD), scanning electron microscopy (SEM) The electrochemical properties of the three - electrode system were investigated by cyclic voltammetry and constant current charge - discharge method。 The results show that the change of the hydrothermal temperature is not obvious for the morphological changes of the product。 After the hydrothermal heat treatment, the nickel cobalt oxide product can be obtained by heat treatment at 300 degrees Celsius, and the molar ratio of nickel cobalt metal ions is 1: 2; A variety of morphological products, from sheet to sheet assembled peony structure。 The electrochemical test results show that the redox peak of the peony-like cobalt-nickel composite oxide is the highest when the hydrothermal temperature is 120 ° C and the metal ion ratio is 1: 1, showing good quasi-reversible characteristics and the highest ratio capacitance。
Key words: binary metal oxide;nickel - cobalt ratio;hydrothermal synthesis temperature;electrode material
目录
1 绪论 1
1。1 引言 1
1。2 超级电容器的作用 1
1。3钴酸镍作为超级电容器电极材料的研究 2
1。5 合成NiCo2O4的方法 3
1。5。1 化学共沉淀法 3
1。5。2 静电纺丝法 4
1。5。3 高分子配位聚合物热解制备 5
1。5。4 化学复合镀制备高活性节能 NiCo2O4电极 5
1。5。5 水热法 5
2 实验部分 5
2。1 试剂与仪器 5
2。1。1 试剂 5
2。1。2 仪器 6
2。2 实验过程 6
2。3 电极料浆的制备 7
2。4 分析性能测试 7
2。4。1 X射线衍射(XRD)表征