摘要过渡金属氧化物作为锂离子二次电池的负极材料相比于传统的碳材料(372 mAh/g)具有较高的理论容量,一般为目前商用石墨电极的 2-3 倍,同时因为其 来源广泛,成本也很低,是作为新一代高比容量锂离子二次电池的负极材料的优 秀选择。但同时也存在很多问题,例如导电性差、充放电后结构坍塌或膨胀导致 循环性能不稳定等。为了解决这些问题,改善其电化学性质,本文以形貌可控的 氰基 MOFs 为前躯体,通过煅烧等热分解手段制备微/纳米结构的复合金属氧化 物,将其作为锂离子二次电池负极材料。采用 SEM、TEM、EDS、XRD 等表征 技术来系统探究材料合成条件对产物形貌和微观结构的影响,通过循环伏安法、 恒电流冲放电、交流阻抗等手段来研究复合金属氧化物作为负极材料的电化学性 能。83305
结果表明纳米片层叠加成的微球结构氰基 MOFs:Fe(H2O)2[Ni(CN)4],煅烧 后到了形貌保持的多孔纳米复合金属氧化物 Fe3O4-NiO 微球,其锂离子二次电池 负极材料的首圈放电容量高达 1652。6 mAh/g,20 循环后的稳定可逆容量也在 1496。9 mAh/g 的高比容量水平(100 mA/g 的恒定电流密度下),大电流密度下测 得 717。44 mAh/g 的稳定数据(1000 mA/g 的恒定电流密度下),四梯度 (100 mA/g、 200 mA/g、500 mA/g、1000 mA/g) 倍率性能测试中恢复率也在 94。6% 的高水准。 这些优秀的性能得益于这种纳米片层多孔结构可以有更多的储锂空间。
毕业论文关键词:金属有机框架材料;过渡金属纳米氧化物;锂离子二次电池;负极材料
Abstract Transitionmetaloxides as the lithium-ion secondary battery anode electrode material compare to conventional carbon material (372mAh/g) has a high theoretical specific capacity, amost are 2-3 times of current commercial graphite electrodes。 And because of its wide range of sources, the cost is very low, as a new generation of high-specific capacity lithium- ion secondary battery anode material excellent choice。 But there are also many problems, such as poor electrical conductivity, the structure collapsed or swelling after the charge-discharge cycle performance or cause instability。 In order to solve these problems and improve the electrochemical properties, this article focuses on the synthesis of metal complex controlled morphology of MOFs。 Select the best topography as a precursor, corresponding to the formation of nano-metal oxide material by thermal decomposition , used for lithium-ion secondary battery simulation strategy, and by SEM, EDS, XRD, TEM characterizations systematically explore the conditions for which conditon is in mojor effect of synthesized Morphology,composition and microstructure of the material, and finally the material electrochemical performance testing incloude cycle voltage- currnet, Crossflow charge-discharge, EIS ,to provide experimental and theoretical basis for exploring ideas such materials research。
The results showed that the addition of nano-laminated structure
microspheres cyano MOF: Fe(H2O)[Ni(CN)4], after the thermal decomposition, the porous metal oxide nanocomposite Fe3O4-NiO morphologies was held。 The first cycle discharge capacity of lithium-ion secondary battary up to 1652。6 mA h/g, after 20 cycles we got 1496。9 mAh/g high level stable reversible capacity。 (100mA / g constant current density), Measured at a high current density ,we got 717。44 mAh / g of stable data(1000mA/g constant current density), four gradient rate