毕业论文
计算机论文
经济论文
生物论文
数学论文
物理论文
机械论文
新闻传播论文
音乐舞蹈论文
法学论文
文学论文
材料科学
英语论文
日语论文
化学论文
自动化
管理论文
艺术论文
会计论文
土木工程
电子通信
食品科学
教学论文
医学论文
体育论文
论文下载
研究现状
任务书
开题报告
外文文献翻译
文献综述
范文
基于Kinect的人体运动姿态捕捉和识别技术研究(7)
2.3实现手势识别的方法
Microsoft Kinect SDK并没有包含手势识别引擎。因此需要开发者来定义和手势识别。从SDK的Beta版放出以来,一些第三方开发者创建的手势引擎已初见端倪。但是,微软没有将他们作为标准的引擎。看来这可能还要等微软将手势识别引擎添加到SDK中来,或者指明可替代的解决方案。本节对手势识别技术进行了简单介绍,希望能够帮助开发者在标准的手势识别引擎出来之前,可以自己动手开发手势识别引擎。
手势识别相对来说可以简单也可以很复杂,这取决与要识别的手势。有三种基本的方法可以用来识别手势:基于算法,基于神经网络和基于手势样本库。每一种方法都有其优缺点。开发者具体采用那种方法取决与待识别的手势、项目需求,开发时间以及开发水平。基于算法的手势识别相对简单容易实现,基于神经网络和手势样本库则有些复杂。
2.3.1基于算法的手势识别
算法是解决软件开发中几乎所有问题的最基本方法。使用算法的基本流程就是定义处理规则和条件,这些处理规则和条件必须符合处理结果的要求。在手势识别中,这种算法的结果要求是一个二值型对象,某一手势要么符合预定的手势要么不符合。使用算法来识别手势是最基本的方法,因为对于有一点编程能力的开发这来说,手势识别的代码易于理解,编写,文护和调试。
但是,最简单直接的方法也有其缺点。算法的简单性限制了其能识别到的手势的类别。对于挥手(wave)识别较好的算法不能够识别扔(throw)和摆(swing)动作。前者动作相对简单和规整,后者则更加细微且多变。可能能够写一个识别摆动(swing)的算法,但是代码可能比较费解和脆弱。
算法还有一个内在的扩展性问题。虽然一些代码可以重用,但是每一种手势必须使用定制的算法来进行识别。随着新的手势识别算法加入类库,类库的大小会迅速增加。这就对程序的性能产生影响,因为需要使用很多算法来对某一个手势进行识别以判断该手势的类型。
最后,每一个手势识别算法需要不同的参数,例如时间间隔和阈值。尤其是在依据流程识别特定的手势的时候这一点显得尤其明显。开发者需要不断测试和实验以为每一种算法确定合适的参数值。这本身是一个有挑战也很乏的工作。然而每一种手势的识别有着自己特殊的问题。
2.3.2基于神经网络的手势识别
当用户在做手势时,手势的形式并不总是足够清晰到能够判断用户的意图。例如跳跃手势,跳跃手势就是用户短暂的跳起来,脚离开地面。这个定义不能够提供足够的信息来识别这一动作。
咋一看,这个动作似乎足够简单,使得可以使用算法来进行识别。首先,考虑到有很多种不同形式的跳跃:基本跳跃(basic jumping)、 跨栏(hurdling)、 跳远(long jumping)、 跳跃(hopping),等等。但是这里有一个大的问题就是,由于受到Kinect视场区域的限制,不可能总是能够探测到地板的位置,这使得脚部何时离开地板很难确定。想象一下,用户在膝盖到下蹲点处弯下,然后跳起来。手势识别引擎应该认为这是一个手势还是多个手势:下蹲或 下蹲跳起或者是跳起?如果用户在蹲下的时间和跳跃的时间相比过长,那么这一手势可能应被识别为下蹲而不是跳跃。
看到这些,最开始对跳跃的定义就会变得模糊。这一姿势很难定义清楚,使得不能够通过定义一些算法来进行识别,同时这些算法由于需要定义过多的规则和条件而变得难以
管理
和不稳定。使用对或错的二值策略来识别用户手势的算法太简单和不够健壮,不能够很好的识别出类似跳跃,下蹲等动作。
共8页:
上一页
1
2
3
4
5
6
7
8
下一页
上一篇:
C++电子邮件客户端的设计与实现
下一篇:
中国学术界和华人影视界X度空间理论初探
基于Apriori算法的电影推荐
PHP+IOS的会议管理系统的设计+ER图
数据挖掘在电子商务中的应用
数据挖掘的主题标绘数据获取技术与实现
基于PageRank算法的网络数据分析
基于神经网络的验证码识别算法
基于网络的通用试题库系...
C#学校科研管理系统的设计
公寓空调设计任务书
承德市事业单位档案管理...
志愿者活动的调查问卷表
10万元能开儿童乐园吗,我...
神经外科重症监护病房患...
国内外图像分割技术研究现状
中国学术生态细节考察《...
AT89C52单片机的超声波测距...
医院财务风险因素分析及管理措施【2367字】