神经网络的组织和判断是基于统计和概率的,因此使得像识别手势这些过程变得容易控制。基于什么网络的手势识别引擎对于下蹲然后跳跃动作,80%的概率判断为跳跃,10%会判定为下蹲。
  除了能够识别复杂和精细的手势,神经网络方法还能解决基于算法手势识别存在的扩展性问题。神经网络包含很多神经元,每一个神经元是一个好的算法,能够用来判断手势的细微部分的运动。在神经网络中,许多手势可以共享神经元。但是每一中手势识别有着独特的神经元的组合。而且,神经元具有高效的数据结构来处理信息。这使得在识别手势时具有很高的效率。
  使用基于神经网络进行手势识别的缺点是方法本身复杂。虽然神经网络以及在计算机科学中对其的应用已经有了好几十年,建立一个好的神经网络对于大多数程序员来说还是有一些困难的。大多数开发者可能对数据结构中的图和树比较熟悉,而对神经网络中尺度和模糊逻辑的实现可能一点都不了解。这种缺乏建立神经网络的经验是一个巨大的困难,即使能够成功的构建一个神经网络,程序的调试相当困难。
  和基于算法的方法相比,神经网络依赖大量的参数来能得到精确的结果。参数的个数随着神经元的个数增长。每一个神经元可以用来识别多个手势,每一个神经远的参数的变化都会影响其他节点的识别结果。配置和调整这些参数是一项艺术,需要经验,并没有特定的规则可循。然而,当神经网络配对机器学习过程中手动调整参数,随着时间的推移,系统的识别精度会随之提高。
上一篇:C++电子邮件客户端的设计与实现
下一篇:中国学术界和华人影视界X度空间理论初探

基于Apriori算法的电影推荐

PHP+IOS的会议管理系统的设计+ER图

数据挖掘在电子商务中的应用

数据挖掘的主题标绘数据获取技术与实现

基于PageRank算法的网络数据分析

基于神经网络的验证码识别算法

基于网络的通用试题库系...

C#学校科研管理系统的设计

公寓空调设计任务书

承德市事业单位档案管理...

志愿者活动的调查问卷表

10万元能开儿童乐园吗,我...

神经外科重症监护病房患...

国内外图像分割技术研究现状

中国学术生态细节考察《...

AT89C52单片机的超声波测距...

医院财务风险因素分析及管理措施【2367字】