摘要:本文前部分着重介绍了分形几何的起源发展以及分形特征和分维数的基本概念,该部分主要梳理科赫曲线、康托尔集和谢尔平斯基三角等典型分形几何的构造、性质和特征,以及介绍说明分维数的定义、种类和算法,从而进一步加深认识与理解分形理论的基础知识。
后半部分首先介绍了分形几何的生成机制,并着重介绍其中广泛应用的迭代函数系统算法(IFS算法),同时举例说明在该算法下生成的科赫曲线等典型分形几何,以及通过非线性映射生成的Julia集和芒德布罗集,最后利用计算机运用Matlab设计不同分形的迭代程序生成了许多精美绝伦的分形图案。其次着重介绍了分形几何在各领域的应用和一些前沿的研究成果。
关键词: 分形几何;分维数;IFS算法;非线性映射;Julia集;Matlab;应用
Brief Probe Into Fractal Geometry
Abstract: The first part of the dissertation focuses on the origin and development of fractal geometry, as well as the basic concepts of fractal features and fractal dimensions. Then this section mainly reviews the structure, properties, and characteristics of typical fractal geometries such as Koch curves, Cantor sets, and Sherpinski triangles. Besides, illustrating the definition of the fractal dimension, types and algorithms. Thus learning more about the basics of fractal theory.
The rest chapters introduces firstly the generation mechanism of fractal geometry, and puts emphasis on applications in iterative function system algorithm (IFS algorithm). Meanwhile, taking some examples to illustrate typical fractal geometry, like Koch curve generated by IFS algorithm as well as Julia sets and Mansfold sets generated by nonlinear mapping. Finally, exquisite pictures are designed by iterative program in Matlab. Then focusing on the application of fractal geometry in various fields and some of the cutting-edge research results.
Keywords: Fractal geometry; Fractal dimension; IFS algorithm; Nonlinear mapping; Julia set; Matlab; Application
目录
1绪论 1
1.1分形几何提出的历史背景 1
1.2分形几何的提出以及研究状况 1
1.2.1分形几何的提出 1
1.2.2分形几何的研究状况 1
1.3分形几何的研究意义 2
2分形几何综述 3
2.1分形几何——科赫曲线 3
2.1.1海岸线与科赫曲线的联系 3
2.1.2科赫曲线的测量 4
2.1.3科赫曲线的自相似性 5
2.1.4科赫曲线的特征 6
2.2分形几何的特征 6
2.2.1康托尔三分集 6
2.2.2谢尔平斯基三角 9
2.2.3分形几何特征的总结 11
2.3分形几何维数 11
2.3.1分形维数的提出 11
2.3.2分形维数的种类 13
2.3.3典型分形几何的维数 13
3分形几何的生成 16
3.1IFS算法提出的背景 16
3.2用计算生成分形的方法——IFS算法