摘要Pade逼近是一种关于函数值的特殊类型的有理分式逼近法。它的思想是以尽快的速度与泰勒级数展开相匹配。本文介绍了Pade逼近的定义,Baker定义和Pade-Frobenius定义并推导了在 情况下的Pade逼近式的计算公式。34433
我们计算了 的Pade逼近,计算了函数 的Pade逼近式和分析了与泰勒展开式相比的优势。
应用Pade逼近给出屈曲杆的大挠度以及单摆的大幅运动周期的有理近似公式,这些公式给出了相当好的逼近效果。
应用Pade逼近在求解数值分析领域中的应用。Volterra人口模型是在Logistic模型的基础上加上了积分表达形式,以表示毒素积累对种群的影响。利用Taylor展开级数结合Pade逼近的方法求解Volterra模型,得到了模型的近似解,并在此基础上分析了模型参数的影响。 毕业论文关键词; Taylor级数;Pade逼近;屈曲杆大挠度;单摆大幅运动周期;Volterra人口模型
目录
摘要
1、引言 1
2、Pade近似 2
2.1 Pade逼近理论概述 2
2.2泰勒公式 2
2.3 Pade的定义 3
2.4 Pade逼近的数值计算算法推导 3
3、Pade逼近的数值计算举例 5
4、Pade近似的应用 9
4.1 Pade近似在力学中的应用 9
1、屈曲杆的大挠度公式 9
2、单摆的运动周期 11
4.2 Pade近似在数学模型求解中的应用 12
5、结论 18
6、致谢 19
7、参考文献 20
8、附录 21
Abstract
The Pade approximation is a special type of function value for the rational fraction approximation method. The idea is to match the Taylor series expansion with the speed of the speed as soon as possible.
In this paper, the definitions of Pade approximation, the definition of Baker and Frobenius are given and the formula of the Pade approximation are derived when .
We calculated the Pade approximation of the functions and and analyzed the advantage compared with Taylor expansion.
Rational approximate formulas of Large deflection of buckling rod and Pendulum substantial movement cycle were obtained by using Pade approximation and the results were good.
The application of Pade approximation in numerical analysis filed. Volterra population model was formed based on the Logistic model incorporating integration formula to represent the effect of toxin accumulation on the species. The Volterra model was solved by using the Taylor expansion combining Pade approximation. The analytical approximate solutions were obtained and the effects of the model parameters were analyzed.
Keywords: Taylor series; Pade approximation; Large deflection of buckl-
ing rod; Pendulum substantial movement cycle;Volterra population model