摘要本文基于 FPGA,提出了一种数据采集与实时处理系统的设计方案,并实现了此系统 的部分功能。在理论算法上,本文分析了三种对输入信号的处理方法:输入虚部为零的复 信号、用 N 点 FFT 实现 2 个 N 点实序列的 DFT 以及输入正交解析信号,并对每一种方 法进行 MATLAB 仿真验证。由于 FFT 算法的栅栏效应会造成一定误差,本论文重点讨论 了两种可提高信号频率估计精度的算法——FFT-CZT 联合细化频谱算法和幅度插值算 法,在不同信噪比下计算估计频率的均方根误差,提出了细化频谱算法可参考的细化频谱 区间,并将两种算法性能进行对比分析。在 MATLAB 中仿真的结果证实算法均有效地提 高了频率估计的精度。最后,借助 Quartus II 开发环境,实现了基于 FPGA 的数据采集与 实时处理的系统的部分功能,各个模块采用 Verilog 语言编写。75938
毕业论文关键词 FPGA FFT 实时处理 频率估计 MATLAB
Title Research and implementation of power spectrum analysis based on FPGA
Abstract Based on FPGA, this paper puts forward a design scheme of data acquisition and real-time processing system, and some functions of the system are realized。 In terms of theoretical algorithm, this paper analyzes three kinds of input signal processing methods。 These methods are as follows: entering the complex signal with zero imaginary part, using N points FFT to achieve 2N points real sequence of DFT and entering orthogonal analysis signal。 And MATLAB simulation is performed for each method。 Because of the fence effect of FFT algorithm, this paper focuses on two algorithms that can improve the accuracy of signal frequency estimation-- FFT-CZT joint refinement of spectral algorithm and amplitude interpolation algorithm。 The average root mean square error of the estimated frequency is calculated under different signal to noise ratio, and the reference of refined spectral range is proposed。 The performance of the two algorithms is compared and analyzed。 The results of simulation in MATLAB show that the algorithm can effectively improve the accuracy of frequency estimation。 Finally, with the development environment of Quartus II, some functions of data acquisition and real-time processing system based on FPGA are realized。 Each module is written in Verilog language。
Keywords FPGA FFT real-time processing signal frequency estimation MATLAB
目 次
1 绪论 1
1。1 研究背景及意义 1
1。2 FPGA 概述 1
1。3 FFT 算法基础 2
1。4 频率估计技术的发展 3
1。5 本文所作的工作及论文结构 3
2输入信号的处理方法 5
2。1 信号处理中的复数表示 5
2。2 输入虚部为零的信号 6
2。3 N 点 FFT 实现 2 个 N 点 DFT 6
2。4 输入正交解析信号 9
基于 FFT 的高精度信号频率估计 。。