摘要阿霉素作为一种抗肿瘤抗生素,其抗瘤谱较广,但是抗肿瘤是非特异性,使阿霉素在临床上的使用受到了限制,因此能够直接作用于肿瘤细胞的阿霉素传递系统的研究在近年来受到广泛关注。石墨烯量子点作为药物传递系统对肿瘤组织有被动靶向能力,同时能药物的作用时间延长,提高药物疗效和降低药物的毒副作用等优势。本文通过对石墨烯量子点GQD7)跨膜传递阿霉素的分子动力学模拟(molecular dynamics, MD)和操控式动力学模拟(steered molecular dynamics, SMD),模拟石墨烯量子点跨膜传递阿霉素的过程,研究其在脂质膜表面的行为,以及穿膜过程的行为,探究石墨烯量子点(GQD7)能否跨膜传递阿霉素,以及不同浓度的石墨烯量子点对阿霉素跨膜传递的影响。89381
Doxorubicin as an anti-tumor antibiotic, its anti-tumor spectrum is broad, but the anti-tumor is nonspecific, so that the use of doxorubicin in clinical use has been limited, it can directly act on the tumor cells of the doxorubicin transmission system The research has been widely concerned in recent years。 Graphene quantum dots as a drug delivery system has a passive targeting ability of tumor tissue, while the role of drugs can be extended to improve drug efficacy and reduce the side effects of drugs and other advantages。 In this paper, the molecular dynamics (MD) and Steered Molecular Dynamics(SMD) of the transmembrane transfer of doxorubicin (GQD7) were investigated。 (GQD7) can be used to transport doxorubicin, and different concentrations of graphene quantum dots on the surface of the lipid membrane, as well as the behavior of the membrane process, to explore the graphene quantum dot (GQD7) The effect of transmembrane transmembrane transfer。
毕业论文关键词:分子动力学模拟; 石墨烯量子点; 阿霉素; 跨膜传递
Keyword:Molecular dynamics simulation; Graphene quantum dots;Doxorubicin; Transmembrane transfer
目 录
引言 4
1。1阿霉素的临床应用简介 4
1。2石墨烯量子点简介 5
1。3细胞膜简介 6
2。分子动力学模拟简介 7
2。1力场 7
2。2牛顿力学及其源Q于W优E尔A论S文R网wwW.yOueRw.com 原文+QQ75201,8766 数值计算 8
2。3操控式动力学模拟 8
3。实验过程 9
3。1分子动力学模拟的程序 9
3。2实验步骤 10
3。3 分子动力学模拟(MD) 10
3。4 操控式动力学模拟(SMD) 11
4。实验结果与讨论 11
4。1 MD模拟结果 11
4。1。1石墨烯量子点的跨膜过程 11
4。1。2石墨烯量子点与阿霉素复合体的跨膜过程 11
4。1。3 MD结果小结 14
4。2 SMD模拟结果 14
4。2。1石墨烯量子点的穿膜过程 14
4。2。2阿霉素的穿膜过程 16
4。2。3石墨烯量子点—阿霉素穿越膜过程 17
4。2。4 SMD结果小结 18
5。结论