传统的迁移理论分为形式训练说、共同要素说、概括迁移说三种理论。形式训练说是以官能心理学为基础,可以把人的心理官能分为两大类:认识官能分为感觉、想象、记忆、注意、悟性和理性;动求官能则包括愉快与不愉快的感情以及意志作用。从这种认识出发,形式训练说认为,教学能使所有官能通过某种形式的学科得到训练,训练的项目越难,官能得到的训练越多。例如,在小学的数学计算教学时,往往会增加学生在近阶段所学的计算类型的练习,从所取得的效果来看,训练确实能强化学生掌握这种计算的方法。共同要素说和概括迁移说都强调只有在两种学习情境中含有相同或相似的要素才会产生迁移。贾德的概括化理论表明:个体的知识概括的水平越高,迁移发生的可能性和范围就越大。随着认知科学和信息加工理论的发展,现代心理学更加关注人的心理过程,提出了新的学习迁移理论,包括认知结构迁移理论、产生式迁移理论和认知策略迁移理论等。
2 迁移对学生数学学习的重要意义
联合国教科文组织的埃德加•富尔先生做出这样的预言:“未来的文盲将不再是仅仅不识字的人,而是不会学习的人。”专家学者对这个观点已经形成了共识。显然,学会学习,有效学习,掌握学习方法是适应未来社会生活的必要条件。所以迁移在个人发展和在适应未来社会中起着非常重要的作用。以下从数学学科特点,小数学学教材的结构,新课改的要求,现代学生观和对学生学习的效率等方面分析了培养学生迁移能力的意义。
2.1 符合数学学科特点
根据数学学科本身的特点,迁移在数学学习中普遍存在,并对学习有促进作用。数学是一门严密的学科,系统性很强,在数学知识或技能之间存在着严密的逻辑关系。前面知识是后面知识的基础,后面知识是前面知识的延伸和拓展。在学习数学知识时,迁移是帮助学生将所学知识系统化结构化的最有效的方法之一。
2.2 有利于学生有效把握教材内容
教材是学生学习的主要载体,迁移有利于学生把握小学数学教材的整体结构。在数学教材中,每一单元、章节之间相对而言不是独自存在的个体,他们之间有着一定的联系和逻辑关系。 以苏教版为例,一年级上册首先学习了“数一数”“比一比”,让学生初步的感受“数”,接着第二单元开始学习“认数—1”,以“1”为基础再认识10以内的自然数,20以内的自然数等。之后的“分与合”、“数的加减法”等都是以“1”为基础才得以展开。三年级学习分数的初步意义时,拓展了数的概念,知道了“1”不仅代表一个个体,还可以表示一个群体,也就是所说的“单位1”。同一年级的不同单元,不同年级之间的知识点是紧密联系的,共同构成一个严密的逻辑体系。培养学生的迁移意识,使学生能够发现知识之间的联系,有助于学生全面把握课本知识和对知识的理解和运用,形成良好的认知结构。尤其是在小结阶段和复习阶段,迁移对学习的促进效果更加明显。文献综述
2.3 影响学生思维发展
依据学生的现实发展水平,迁移有助于学生的思维发展,提高解决问题的能力。模仿,是学生最初学习的方式[3]。在日常教学中,教师的书写、语言和思考方式都无形的影响着学生,都可能是学生模仿的来源。好的榜样有助于学生迁移的顺利进行,不好的模仿可能会产生不必要的迁移。在上“一位小数减两位小数”这节课时,教师为方便学生清楚的理解小数位数不够用“0”补位的方法,将小数末尾用于补位的“0”用方框框起来。即使老师强调过“末尾的0可以省略”,但仍有学生练习时,写出“0”并用方框框起来,造成了负迁移。迁移是适合学生的现实学习过程,影响着学生各个方面。