摘要本文研究的是多重休假的Geo/Geo/1离散时间排队模型,并在其中引入了负顾客、策略启动时间机制和反馈机制。负顾客在到达时是不接受服务的,只对正在队首接收服务的正顾客进行一对一的抵消,这些负顾客在没有正顾客的前提下是自动消失的。休假排队系统是排队系统经典理论研究的延伸和拓展,近年来研究成果丰富,是排队论的最新成果的展现。在日常生活中,排队论的例子随处可见,譬如说吃饭排队、买票检票排队、购物结账排队等等。近年来排队论的研究成果也被应用的十分广泛,例如计算机通信网络、计算机系统设计、通信、交通等领域都有它的应用并且硕果累累。79101

 首先考虑多重休假的Geo/Geo/1离散时间排队模型,并引入策略启动时间机制。本文中加入的负顾客是排队模型的一个新兴研究方向,近年来也是呈现着上升的趋势。负顾客可以说是系统的灾难,是服务员的错误展示,具有重要的现实意义。

 其次建立了具有反馈机制和多重休假的离散时间排队模型,同时运用拟生灭过程和矩阵几何解的方法,得到相关的队长随机分解表达式、附加队长分布表达式等指标。系统的状态是某一个顾客在服务结束之后离开时的系统队长。论文网

通过对加入了启动期、反馈机制的休假排队论的研究,在数值例子的基础上分析其中的参数对系统主要的性能指标的影响,得到有价值意义的结论,提出具有建设性的意见和建议。

毕业论文关键词:负顾客;启动期;工作休假;拟灭生过程;矩阵几何解

Abstract In this article, a Geo/Geo/1 discrete multiple vacation queuing model, in which the negative customers and <p, N> policy of set-up time and feedback mechanism is introduced。 Negative customers won’t accept service when they arrive, negative customers only have one-by-one offset to the team's first receiving service。 And these negative customers disappear automatically when there are no positive customers。 Vacation queueing system is the extension and development of the classical theory in the queueing system。 In recent years, the research results are abundant, and it is the latest achievement of queuing theory。 In daily life, the queuing theory can be seen everywhere。 For example, we must queue when eating,  buying a ticket, having tickets checked, shopping checkout line and so on。 Queuing theory has been widely used in recent years, such as computer communication network, computer system design, communication, transportation and other fields have its application and fruitful。

 Firstly, we consider the Geo/Geo/1 discrete multiple vacations queueing model, so that the policy of set-up time can be introduced 。 In this paper, the negative customer is a new research direction of queuing model, and it is also a rising trend in recent years。 Negative customers can be said to be a system of disaster, which are the mistakes made by the attendants。 It has important practical significance。

Secondly, we establish a discrete-time queueing model with feedback mechanism and multiple vacations。 At the same time, using quasi birth and death process and matrix-geometric solution, we can get the correlation of the length of the random decomposition, the additional distribution of the expression of the other indicators。 The status of the system is the length of the team after the end of the service。 

We get the valuable conclusion by the research of the vacation queuing theory and the analysis of effects of the parameters on the main performance indexes of the system which are based on the numerical examples。 Finally, we can put forward constructive opinions and suggestions。

Keywords: negative customers, set-up time, working vacation, quasi birth and death process, matrix-geometric solution。

上一篇:高考数学中应用题的数学模型的构建
下一篇:导数的意义及应用

带有负顾客及反馈优先权...

带有强占优先权的受控排队系统研究

人民币汇率动态传导机制研究

两类带有离散时滞的SI和...

一类带有边值条件的分数...

上海市土地利用覆被变化...

带反馈的MMPP(2)G1植物病...

新課改下小學语文洧效阅...

网络语言“XX体”研究

LiMn1-xFexPO4正极材料合成及充放电性能研究

安康汉江网讯

张洁小说《无字》中的女性意识

我国风险投资的发展现状问题及对策分析

互联网教育”变革路径研究进展【7972字】

ASP.net+sqlserver企业设备管理系统设计与开发

老年2型糖尿病患者运动疗...

麦秸秆还田和沼液灌溉对...